(25)

WebElements: the periodic table on the world-wide web

www.webelements.com

				,																					
	18	F 7	ב ב	-		_				_												_		_	
	11			Duarine S	u.	18,998	aticito 17	5 -	ۇ 5	SCHOOL STRINGS	35	ά	1	P.S.O.	23	_	. 68	eniese	22	At	(210)	ununseptkm 44.7			
	16			entition B	0	15,999	sufur 15	2 (J	ָר בּ	Selection	荗	ď) ;	Secrion 1	25	Te	127.60	poloraum	I 1	ဂ	206	UTITION THE	11.H	3 i	Š
	15			rillogen 7	z	14,007	phosphorus 15	2 ∩	120 12	rsenic	63	Δc) [Buldhary	20	Sb	121.78	Dismuth.	2 6	2	208.98	rumperdian 515		2 3 3	202
	41			carbon 6	ပ	12.011	<u>1</u>	U	֓֞֞֞֓֓֓֓֓֟֟֓֓֓֓֓֓֓֓֓֓֓֟֟֓֓֓֓֟֟֓֓֓֓֟֟֓֓֓֓֟֟ ֓	thrius made	32	Q.	3.6	5	23	S	118,71	3 5	ž 2	χ Ο	207.2	nunquadum) 114		5 E	1502
	5			Date 5	Ω	10.811	akastrium 13	Ā	Z 98	ne ferr	5	Ga Ga	27.07	ndem	\$,	_	114.82	the furn	= F	_	201.38	143	1	, <u>,</u>	5
	12		•					•		app.	ន	Zn	25.33	cequipeo	æ (င္ပ	11241	E-BROLEY BO	3 -	6	20028	4112	Unh) 2 5 6 3 6 4 7	
	¥									леффа	65	3	35.	Silver	7	Ad	107.87	景品		T T	195.97	141	Ra	? []	
1	10									ricke	28	Z	59.653	pedadim	÷ (2	106.42	m Glad	2	7	135.09	110	Ds	1381	
	ø									coball	7.1	ပိ	58.933	rhodium	? č	두	102.91	Ē	1	=	192.22	109	M	1276	
	∞									<u> </u>	₽	Ψ	55.845	Famerica 4.4	ŧ (H H	101.07	92	ć	3	190.23 Passism	1 08	Hs	12701	
	-									manganesa or	ŝ	Ξ	54.938	lest melinm	}	ပ	196	2	2	2	poprtum	707	Bh	IZIZ	
	9			<u>.</u>	_	Ya mass)				arromum 3.4	ŧ (5	51.996	nolybdenan 4.2	7	<u>0</u>	25.56 Parison	7	7	• i	teabornem	106	Sq Bh	221	
	ç		lemon rama	atomic aumber	symbo	acine weint (meen relative mass)			- 1	73	7	>	59.942		1			2			1		Op	[286]	
	4		Key:	ato a	S	accine whe			1	72	į	_	47.857	CDOMBER 40	,	ī	91224 Patrick	72	<u>±</u>		d'antordam	104	꽃	12571	
	က				1				14	77		ပ	38	130 E	>	_	93.50 Magni	7	=	3 8	Ē	\$	Ľ	[262]	
									_		_		_[.					57-70	*		⇇	89-102	* *	7	
	7		perythern	* C	֓֞֞֝֞֞֜֞֝֞֝֟֞֝֟֓֓֓֟֟	Tepresim	77	ĕ	24.305	2	ć	S.	40.078	38	ď	5 i		96	E	1 to 1	nager.	2 (Ra	1220	
	1 hydrogen	- I	1.0078 ITH-m	<u></u>	j	#DOM:	Ξ;	Sa	22.990	5	_	<	39.098	37	40	3 5	Cassium	£	S	137.91	Farchan	= [_	[223]	
	<u> </u>					1				_											_			!	

	tertheren certs	le	Tracentement	an inches										
	12		_				Uridona Gradina	nedožniem		turnistads.kp		Г	Fraken	Kebim
;	•	3 (3 1	3	5	70	2	\$		9			69	2
"lanthanoids	g	٥	à	Ž	E D.	E V	Ē	7	ŕ	Ž	<u></u>	Ľ	1	5
		140 13				5	3	3		2	2	J	Ξ	<u> </u>
	E TOTAL	- Charles	TAD.D.	- 1	C#1	150.38	51.8	157.25	158.83	162.50	164.93	167.28	168.93	173.08
					THE PARTY OF THE P	Putentum		earlies earlies	Derkelum.	Cellioniera	ersteram	MIT MITTER	nendelavium	Pobelium
	3 4	i	<u>,</u>		î	\$	62	96	97	8	66	5	101	102
**acünoids	Ac	_	r C		S	Ξ	Δm	<u>د</u>	ď	ځ	Ц	£	75	1
		É	, i		<u>.</u>	5		5	ב	5			<u> </u>	?
	1	W.755	231.04	238.03	737	244	12431	1247	12471	[251]	[252]		12561	1753
											ı	1		

Symbots and names: the symbots and recres of the elements, and first spellings are those recommended by the international Union of Pure and Applied Chemistry (NPAC - 14tp.//www.lupac.cog). Names here yet to be proposed for the most recently discovered elements beyond 112 and so those used here are 1UPAC's temporary systematic manes. In the USA and soms other countries, the upellings attunium and cestum are normal wide to the UK and elementers the common spelling is adoption.

Group babils; the nurseric eystem (1–18) used here to the current (UPAC convention.

Atomic weights (near relative masses): Agant from the branchest elements, these are the IUPAC 2007 values and given to Significant figured. Elements for which the stories weight is given within square brackets have no stable nurshes and are represented by the elements knowed belonger reported in the time of withing.

Only the elements knowed belonger reported in the time of withing the stable of the control of th

'H NMR CHEMICAL SHIFT CHART*

Type of Proton	Formula	Chemical Shift
Reference peak	Si(CH₃)₄	0
Saturated primary	RCH₃	0.7-1.3
Saturated secondary	RCH₂R	1.2-1.4
Saturated tertiary	RCHR ₂	1.4-1.7
Allylic primary	СНЗ	1.6-1.9
Methyl ketones	RCOCH ₃	2.1-2.4
Aromatic methyl	Ph-C H ₃	2.5-2.7
Alkyl chloride	R-C H ₂Cl	3.0-4.0
Alkyl bromide	R-CH₂Br	2.5-4.0
Alkyl iodide	R-CH ₂ I	2.5-4.0
alkyl amine	RNH ₂	Extremely variable (1-5)
Alcohol, ether	R-CH ₂ O-R'	3.3-4.0
Alkynyl	R	2.5-2.7
Vinylic		5.0-6.5
Aromatic	Ph-H	5.6-8.0
Aldehyde	RCO H	9.7-10.0
Carboxylic acid	RCOOH	11.0-12.0
Alcohol	ROH	Extremely variable (2.5-5.0)

^{*}data from McMurry, J. Organic Chemistry, Third edition, Brooks-Cole, California, 1992 please note: Ph = phenyl or an aromatic ring, the CO in the ketone and aldehyde is a carbonyl, ie, C∞O

CHARACTERISTIC INFRARED FREQUENCIES*

cm-1	Functional group	Comments
600-3400 مر	11/2 7.7	
7000-2400	O-H stretching	3600-3500 cm ⁻¹ (sharp, often weak) from "free" or unassociated O-H; 3400-3200 cm ⁻¹ (broad) from H-
	1	bonded (associated) O-H. Carboxylic acids and β- dicarbonyl compounds have very strongly associated O-I
		with a very broad absorption (500 cm ⁻¹) centered at 3000
		2900 cm ⁻¹ .
3500-3200	N-H	3300 cm ⁻¹ (sharp) from unassociated N-H; 3200 cm ⁻¹
	stretching	(broad) from associated N-H. An NH2 group usually
	- 1	appears as a doublet (ca. 50 cm ⁻¹ apart); N-H of a 2°
3300	- Іс-н	amine often weak.
	stretching	Usually very sharp and strong in RC=CH; look for
	terminal alkyne	confirmatory C=C stretching at 2260-2100 cm ⁻¹ .
II	!	Complete absence of absorption at 3300-3000 cm ⁻¹
	ĺ	indicates absence of H bonded C=C or C≡C; may be
3100-3000	— С. н	weak in large molecules.
,	stretching	Often weak in alkenes of high molecular weight. Symmetrical stretching of =CH ₂ (2975 cm ⁻¹) overlaps
	alkene	with alkane absorption.
	arche	
3000-2800	cyclopropane C-H	Usually strong and multi-banded due to symmetrical and
	stretching	asymmetrical stretching as well as methyl, methylene, and
	alkane	methine differences. Absence of absorption indicates lack
2820-2720	- I _{С-н}	of sp ³ H-bearing carbon
Z0ZU+Z/ZU	stretching	Often shows two bands from combination or overtone.
	aldehyde	Correlate with aldehyde C=O stretching at 1725 cm ⁻¹ .
2250-2225	C≕N	2250 cm ⁻¹ unconjugated nitrile; 2225 cm ⁻¹ conjugated
	stretching	nitrile (special calibration usually needed to distinguish).
2260-2100	<u>nitrile</u>	
2200-2100	C≌C	Moderate for terminal alkynes; very weak or absent if alkyne is nearly symmetrical.
2260-2100	stretching	
2200-2100	C≡X=Y	C=C=O stretching of ketenes (2150 cm ⁻¹) and N=C=O
	stretching	stretching of isocyanates (2250 cm ⁻¹) are very strong and characteristic.
1950	C=C=C	Intensity depends on polarity of substituents. Other
	stretching .	bands in the 2500-1900 cm ⁻¹ region can arise from S-H
	allene	stretching (2600-2550 cm-1, weak) and P-H stretching
	ı	(2440-2350 cm ⁻¹ , medium) besides various overtone and
1820 and 1760		combination absorptions.
COSO WITH TAM	stretching of	Both bands are present and are altered by conjugation and
	acid anhydride	ring size if cyclic. The bands are also present, but closer together, in diacyl perioxides.
800	C=0	Lowered to 1780-1760 cm ⁻¹ by conjugation.
	stretching	
	acyl chloride	•

cm ⁻¹	Functional group	Comments
1770	C=O stretching	Lowered to ca. 1750 cm ⁻¹ by conjugation.
1745	<u>Y-lactone</u>	
1745	C=O stretching 5-membered cyclic ketone	Lowered to ca. 1715 cm ⁻¹ by conjugation.
1735	C=0	Lowered to ca. 1710 cm ⁻¹ by conjugation. Raised to ca.
	stretching ester	1760 cm ⁻¹ by vinyl attached to oxygen.
1725	C=O stretching aldchydc	Lowered to ca. 1690 cm ⁻¹ by conjugation.
1715	C=0	Lowered to ca. 1680 cm ⁻¹ by conjugation. Raised by ca.
	stretching ketone	35 cm ⁻¹ per atom decrease in ring size below 6-membered ring.
1710	C=0	Band appears near 1760 cm ⁻¹ in monomer (rarely
· · · · · · · · · · · · · · · · · · ·	stretching carboxylic acid (dimer)	observed). Shifts to 1610-1550 cm ⁻¹ in carboxylate anion (salts).
1690-1650	C=O stretching amide	Associated forms have C=O stretching ca. 30-40 cm ⁻¹ lower. NH ₂ bending also makes a strong contribution to the 1650-1600 cm ⁻¹ .
1650-1600	C=C stretching alkene	Frequency is increased for exocyclic C=C with decreasing ring size; the opposite occurs for endoyclic C=C except for cyclopropene; absorption occurs at lower frequency in
640	C=N stretching	conjugated alkenes. Polar groups increase band intensity. This band is usually weak (compared to C=O).
1600 and 1500	C=C	Variable intensity; stronger when conjugated or electron
ilso 1580-and 1450	stretching aromatic nuclei	donor groups are attached. Other systems also absorb in this region (e.g., NH ₂ bending).
1600	-NH ₂ bending	Useful to identify 1° amines and amides.
1540	-NH- bending	Useful to identify 2° arnines and N-mono-substituted
1520 and 1350	-NO ₂	amides; may be weak. This pair of bands is usually quite intense.
	asym, & sym. stretching	This pair of bands is usuarly quite intense.
1465	-CH ₂ - bending	
1450 and 1380	-CH ₃ bending	The lower frequency band is especially useful to detect methyl groups. Geminal methyl groups give rise to a doublet (1385 and 1365 cm ⁻¹).
410	-CH ₂ CO-	For a methylene group attached to a carbonyl group.
325	-CH- bending	Usually weak and often unreliable.
1200	Ar-O	These strong bands are commonly assigned to C-O stretching. The position is shifted with unsaturation and branching, and over-lapping bending vibrations often make interpretation uncertain.
150	-C-O-	
100	-CH-O-	
050	-CH ₂ -O-	
050 330 and 1140	RSOR' (sulfoxide)	Strong
380 and 1170	RSO ₂ R' (sulfone)	Strong doublet (coupled oscillator)
200 and 11/0	RSO ₃ R'	Strong doublet (coupled oscillator)

cm-1	Functional group	Comments
970	R C=C H	Useful to distinguish E (trans) 1,2-disubstituted alkenes from Z (cis) isomers.
890	C-H bending R ₂ C=CH ₂ C-H bending	This strong band identifies a terminal methylene group. It is raised by 20-80 cm ⁻¹ if bonded to an electronegative
815	R ₂ C=CHR C-H bending	atom or group. Moderately strong band to characterize a trisubstituted double bond.
730-675	R C=C H	Usually broad and sometimes absured by solvent absorption (C-Cl).
750 and 690	monosubstituted phenyl C-H bending 5 adjacent H's	These are usually the strongest bands below 900 cm ⁻¹ . Electron withdrawing groups suc as -NO ₂ increase the frequency by ca. 30 cm ⁻¹ . Chlorinated solvents obscure some of these bands.
750	ortho-disubst, phenyl C-H bending	BOTH OF MICSO PARKS.
780 and 700	4 adjacent H's meta-disubst. phenyl	
825 -	C-H bending 3 adjacent H's para-disubst phenyl	
	C-H bending 2 adjacent H's	

Infrared Regions Obscured by Solvents

Solvent	Region(s) Obscured
CCI ₄	840-700 cm ⁻¹
CHCl ₃	3000 cm ⁻¹
i .	1200 cm ⁻¹
CS ₂	840-700 cm ⁻¹
332	1600 - 1400 cm ⁻¹

^{*} Values mainly from dilute solutions in relatively nonpolar solvents. They often change with solvent and in liquid film or solid-state spectra.